首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2200篇
  免费   99篇
  国内免费   130篇
  2023年   31篇
  2022年   55篇
  2021年   71篇
  2020年   50篇
  2019年   66篇
  2018年   73篇
  2017年   58篇
  2016年   55篇
  2015年   71篇
  2014年   110篇
  2013年   144篇
  2012年   72篇
  2011年   230篇
  2010年   258篇
  2009年   240篇
  2008年   219篇
  2007年   148篇
  2006年   88篇
  2005年   62篇
  2004年   43篇
  2003年   57篇
  2002年   32篇
  2001年   25篇
  2000年   29篇
  1999年   17篇
  1998年   12篇
  1997年   9篇
  1996年   9篇
  1995年   14篇
  1994年   9篇
  1993年   9篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   9篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1953年   1篇
  1952年   2篇
排序方式: 共有2429条查询结果,搜索用时 15 毫秒
101.
The reliable repair of pre-mutagenic U/G mismatches that originated from hydrolytic cytosine deamination is crucial for the maintenance of the correct genomic information. In most organisms, any uracil base in DNA is attacked by uracil DNA glycosylases (UDGs), but at least in Methanothermobacter thermautotrophicus ΔH, an alternative strategy has evolved. The exonuclease III homologue Mth212 from the thermophilic archaeon M. thermautotrophicus ΔH exhibits a DNA uridine endonuclease activity in addition to the apyrimidinic/apurinic site endonuclease and 3′ → 5′exonuclease functions. Mth212 alone compensates for the lack of a UDG in a single-step reaction thus substituting the two-step pathway that requires the consecutive action of UDG and apyrimidinic/apurinic site endonuclease.In order to gain deeper insight into the structural basis required for the specific uridine recognition by Mth212, we have characterized the enzyme by means of X-ray crystallography. Structures of Mth212 wild-type or mutant proteins either alone or in complex with DNA substrates and products have been determined to a resolution of up to 1.2 Å, suggesting key residues for the uridine endonuclease activity. The insertion of the side chain of Arg209 into the DNA helical base stack resembles interactions observed in human UDG and seems to be crucial for the uridine recognition. In addition, Ser171, Asn153, and Lys125 in the substrate binding pocket appear to have important functions in the discrimination of aberrant uridine against naturally occurring thymidine and cytosine residues in double-stranded DNA.  相似文献   
102.
The herpes simplex virus type 1 UL25 protein is one of seven viral proteins that are required for DNA cleavage and packaging. Together with UL17, UL25 forms part of an elongated molecule referred to as the C-capsid-specific component (CCSC). Five copies of the CCSC are located at each of the capsid vertices on DNA-containing capsids. To study the conformation of UL25 as it is folded on the capsid surface, we identified the sequence recognized by a UL25-specific monoclonal antibody and localized the epitope on the capsid surface by immunogold electron microscopy. The epitope mapped to amino acids 99-111 adjacent to the region of the protein (amino acids 1-50) that is required for capsid binding. In addition, cryo-EM reconstructions of C-capsids in which the green fluorescent protein (GFP) was fused within the N-terminus of UL25 localized the point of contact between UL25 and GFP. The result confirmed the modeled location of the UL25 protein in the CCSC density as the region that is distal to the penton with the N-terminus of UL25 making contact with the triplex one removed from the penton. Immunofluorescence experiments at early times during infection demonstrated that UL25-GFP was present on capsids located within the cytoplasm and adjacent to the nucleus. These results support the view that UL25 is present on incoming capsids with the capsid-binding domain of UL25 located on the surface of the mature DNA-containing capsid.  相似文献   
103.
Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into d-glycero-d-manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.  相似文献   
104.
Protein kinase R (PKR) is an essential component of the innate immune response. In the presence of double-stranded RNA (dsRNA), PKR is autophosphorylated, which enables it to phosphorylate its substrate, eukaryotic initiation factor 2α, leading to translation cessation. Typical activators of PKR are long dsRNAs produced during viral infection, although certain other RNAs can also activate. A recent study indicated that full-length internal ribosome entry site (IRES), present in the 5′-untranslated region of hepatitis C virus (HCV) RNA, inhibits PKR, while another showed that it activates. We show here that both activation and inhibition by full-length IRES are possible. The HCV IRES has a complex secondary structure comprising four domains. While it has been demonstrated that domains III-IV activate PKR, we report here that domain II of the IRES also potently activates. Structure mapping and mutational analysis of domain II indicate that while the double-stranded regions of the RNA are important for activation, loop regions contribute as well. Structural comparison reveals that domain II has multiple, non-Watson-Crick features that mimic A-form dsRNA. The canonical and noncanonical features of domain II cumulate to a total of ∼ 33 unbranched base pairs, the minimum length of dsRNA required for PKR activation. These results provide further insight into the structural basis of PKR activation by a diverse array of RNA structural motifs that deviate from the long helical stretches found in traditional PKR activators. Activation of PKR by domain II of the HCV IRES has implications for the innate immune response when the other domains of the IRES may be inaccessible. We also study the ability of the HCV nonstructural protein 5A (NS5A) to bind various domains of the IRES and alter activation. A model is presented for how domain II of the IRES and NS5A operate to control host and viral translation during HCV infection.  相似文献   
105.
106.
Originally isolated on the basis of its capacity to stimulate T-cell maturation and proliferation, avian thymic hormone (ATH) is nevertheless a parvalbumin, one of two β-lineage isoforms expressed in birds. We recently learned that addition of Ca2+-free ATH to a solution of 8-anilinonaphthalene-1-sulfonate (ANS) markedly increases ANS emission. This behavior, not observed in the presence of Ca2+, suggests that apolar surface area buried in the Ca2+-bound state becomes solvent accessible upon Ca2+ removal. In order to elucidate the conformational alterations that accompany Ca2+ binding, we have obtained the solution structure of the Ca2+-free protein using NMR spectroscopy and compared it to the Ca2+-loaded protein, solved by X-ray crystallography. Although the metal-ion-binding (CD-EF) domains are largely coincident in the superimposed structures, a major difference is observed in the AB domains. The tight association of helix B with the E and F helices in the Ca2+-bound state is lost upon removal of Ca2+, producing a deep hydrophobic cavity. The B helix also undergoes substantial rotation, exposing the side chains of F24, Y26, F29, and F30 to solvent. Presumably, the increase in ANS emission observed in the presence of unliganded ATH reflects the interaction of these hydrophobic residues with the fluorescent probe. The increased solvent exposure of apolar surface area in the Ca2+-free protein is consistent with previously collected scanning calorimetry data, which indicated an unusually low change in heat capacity upon thermal denaturation. The Ca2+-free structure also provides added insight into the magnitude of ligation-linked conformational alteration compatible with a high-affinity metal-ion-binding signature. The exposure of substantial apolar surface area suggests the intriguing possibility that ATH could function as a reverse Ca2+ sensor.  相似文献   
107.
We survey the two-state to downhill folding transition by examining 20 λ6-85? mutants that cover a wide range of stabilities and folding rates. We investigated four new λ6-85? mutants designed to fold especially rapidly. Two were engineered using the core remodeling of Lim and Sauer, and two were engineered using Ferreiro et al.'s frustratometer. These proteins have probe-dependent melting temperatures as high as 80 °C and exhibit a fast molecular phase with the characteristic temperature dependence of the amplitude expected for downhill folding. The survey reveals a correlation between melting temperature and downhill folding previously observed for the β-sheet protein WW domain. A simple model explains this correlation and predicts the melting temperature at which downhill folding becomes possible. An X-ray crystal structure with a 1.64-Å resolution of a fast-folding mutant fragment shows regions of enhanced rigidity compared to the full wild-type protein.  相似文献   
108.
We describe a computational protocol, called DDMI, for redesigning scaffold proteins to bind to a specified region on a target protein. The DDMI protocol is implemented within the Rosetta molecular modeling program and uses rigid-body docking, sequence design, and gradient-based minimization of backbone and side-chain torsion angles to design low-energy interfaces between the scaffold and target protein. Iterative rounds of sequence design and conformational optimization were needed to produce models that have calculated binding energies that are similar to binding energies calculated for native complexes. We also show that additional conformation sampling with molecular dynamics can be iterated with sequence design to further lower the computed energy of the designed complexes. To experimentally test the DDMI protocol, we redesigned the human hyperplastic discs protein to bind to the kinase domain of p21-activated kinase 1 (PAK1). Six designs were experimentally characterized. Two of the designs aggregated and were not characterized further. Of the remaining four designs, three bound to the PAK1 with affinities tighter than 350 μM. The tightest binding design, named Spider Roll, bound with an affinity of 100 μM. NMR-based structure prediction of Spider Roll based on backbone and 13Cβ chemical shifts using the program CS-ROSETTA indicated that the architecture of human hyperplastic discs protein is preserved. Mutagenesis studies confirmed that Spider Roll binds the target patch on PAK1. Additionally, Spider Roll binds to full-length PAK1 in its activated state but does not bind PAK1 when it forms an auto-inhibited conformation that blocks the Spider Roll target site. Subsequent NMR characterization of the binding of Spider Roll to PAK1 revealed a comparably small binding ‘on-rate’ constant (? 105 M− 1 s− 1). The ability to rationally design the site of novel protein-protein interactions is an important step towards creating new proteins that are useful as therapeutics or molecular probes.  相似文献   
109.
The native serpin state is kinetically trapped. However, under mildly destabilizing conditions, the conformational landscape changes, and a number of nonnative conformations with increased stability can be readily formed. The ability to undergo structural change is due to intrinsic strain within the serpin's tertiary fold, which is utilized for proteinase inhibition but renders the protein susceptible to aberrant folding and self-association. The relationship between these various conformations is poorly understood. Antichymotrypsin (ACT) is an inhibitory serpin that readily forms a number of inactive conformations, induced via either environmental stress or interaction with proteinases. Here we have used a variety of biophysical and structural techniques to characterize the relationship between some of these conformations. Incubation of ACT at physiological temperature results in the formation of a range of conformations, including both polymer and misfolded monomer. The ability to populate these nonnative states and the native conformation reflects an energy landscape that is very sensitive to the solution conditions. X-ray crystallography reveals that the misfolded monomeric conformation is in the delta conformation. Further polymerization and seeding experiments show that the delta conformation is an end point in the misfolding pathway of ACT and not an on-pathway intermediate formed during polymerization. The observation that ACT readily forms this inactive conformation at physiological temperature and pH suggests that it may have a role in both health and disease.  相似文献   
110.
The crystal structure of the modular flavin adenine dinucleotide (FAD) synthetase from Corynebacterium ammoniagenes has been solved at 1.95 Å resolution. The structure of C. ammoniagenes FAD synthetase presents two catalytic modules—a C-terminus with ATP-riboflavin kinase activity and an N-terminus with ATP-flavin mononucleotide (FMN) adenylyltransferase activity—that are responsible for the synthesis of FAD from riboflavin in two sequential steps. In the monomeric structure, the active sites from both modules are placed 40 Å away, preventing the direct transfer of the product from the first reaction (FMN) to the second catalytic site, where it acts as substrate. Crystallographic and biophysical studies revealed a hexameric assembly formed by the interaction of two trimers. Each trimer presents a head-tail configuration, with FMN adenylyltransferase and riboflavin kinase modules from different protomers approaching the active sites and allowing the direct transfer of FMN. Experimental results provide molecular-level evidences of the mechanism of the synthesis of FMN and FAD in prokaryotes in which the oligomeric state could be involved in the regulation of the catalytic efficiency of the modular enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号